Инструмент

Батареи полностью заряжены при нагрузке шуруповерт останавливается

Виды батарей и их отличия

Из всех видов батарей, которые выпускает индустрия, по этим аспектам подходит только три вида:

Никель-кадмиевый появился ранее всех других и показал отличные эксплуатационные характеристики. Таковой аккумулятор имеет напряжение 1.35 В … 1.0 В. Тут и далее мы обозначаем первым номинальное напряжение, а последним – напряжение в конце разрядного цикла. Ni-Cd имеют число циклов заряд/разряд, лежащее в границах 100 – 900, это находится в зависимости от свойства материалов и режима работы. Для Ni-Cd также типично очень низкое внутреннее сопротивление, они практически не нагреваются при зарядке, длительно хранятся.

Очередной вид: никель-металлгидридный аккумулятор. Эти батареи были предложены в качестве замены Ni-Cd. Обоснованием служили недочеты обычных аккумуляторов с кадмием. В теории Ni-MH неплох: имеет огромную энергоемкость (до 300 Втч/кг), не подвержен эффекту памяти. Напряжение 1.25 В … 1.1 В, число циклов заряда 300-800. Ni-MH старенького типа за год хранения полностью саморазряжаются. Хранить их рекомендуется при маленький температуре, от 0 до 20 градусов Цельсия. Батареи нового типа LSD Ni-MH (Low Self-Discharge), как указывает их заглавие, имеют малый саморазряд и меньше нагреваются при зарядке.

Недочеты: Ni-MH батарей является 10% разряд в течение первых суток, и существенное выделение тепла при зарядке.

Li-ion батареи имеют напряжение 3.7 В … 2.5 В, но в реальности с ним мало труднее, все находится в зависимости от режима использования батареи. Число циклов заряда приблизительно 600, но это при условии, что от батареи забирают менее 20% емкости. Литий-ионные батареи очень не обожают глубочайшего разряда. От этого они стремительно выходят из строя. Внутреннее сопротивление Li-ion сильно мало, 5 … 15 миллиОм. Саморазряд около 1,6% за месяц при полном заряде и отсутствии нагрузки.

Недочеты: высочайшая цена, ограниченный срок хранения, не зависящий от использования. Опасность взрыва и пожара при неверном воззвании.

батарея, полностью, зарядить, шуруповерт

Аккумуляторная ударная дрель-шуруповерт Bosch GSB 18 VE-2 LI 2008 3.0Ah x2 L-BOXX

Ищете отзывы на Аккумуляторная ударная дрель-шуруповерт Bosch GSB 18 VE-2 LI 2008 3.0Ah x2 L-BOXX? Мы собрали вам 5 реальных отзывов о Аккумуляторная ударная дрель-шуруповерт Bosch GSB 18 VE-2 LI 2008 3.0Ah x2 L-BOXX и 280 советов к покупке. Мы поможем для вас сделать верный выбор!

Плюсы: Не очень большая, 3 АКБ в комплекте!, светодиодная подсветка изготовлена очень комфортно и верно светит в подходящую точку, цельно. железный патрон, тест заряда на самой батарее.

Комментарий: Изготовлен в Малайзии. На качестве сборки не отразилось. Bosch. это Bosch.

Плюсы: батареи сильные ,стремительно берет заряд.Регулировка плавная ,четкая по каждой ступени.Свет размещен верно.как дрель и шуруповерт полнофункциональные.

Недочеты: пеоратор слабоват,миньет не делает. на фоне его плюсов.недочеты мелочь.

Комментарий: все,что пишут о нем незапятнанная правда.стоимость и качество. что могу сказать.беру в руки радости полные брюки. очень приятно работать. использовал,что при 40 летом ,что сейчас при минус 5 отлично,нагрузки выдерживает.быстрее шуруп или биту порвет. ждал пока привезут 5 месяцев ,пробовал разные фирмы ,остановил свой выбор именно на нем. советую

Достоинства: Владею этой дрелью 5 месяцев, летом строил санузел на даче, впечатление от прибора только положительные, мощный, сбалансирован как надо, в руке лежит просто супер. Аккумуляторы (2 шт. в комплекте) заслуживают отдельного упоминания, заряд держат очень долго, а полностью заряжаются всего за час-полтора (точно не засекал).

Комментарий: О потраченных деньгах ни разу не пожалел.

Достоинства: Порльзуюсь 2-й месяц и с каждым днем доволен все больше. Аккумуляторы замечательные. емкость большая, заряжаются быстро. В руке лежит, как влитой. До 10мм в кирпиче сверлит на ура. Главное достоинство. не надо таскать переноски по участку.

Недостатки: Пока не выявил. Посмотрим на надежность.

Комментарий: Для дачного участка и частного дома, где на во всех углах есть 220В, самое то.

Достоинства: огромный крутящий момент. быстрая зарядка аккумулятора. в комплекте два аккумулятора. долгое время работы. подсветка

Как правильно заряжать аккумулятор

Правильный подход к заряжанию аккумуляторов позволяет значительно продлить срок службы АКБ. У каждого типа батарей есть свои требования.

В первый раз после покупки

Аккумуляторы, идущие в комплекте с шуруповертом, продают в частично заряженном состоянии. Возможно, их и зарядили полностью, но на какую величину снизился запас энергии во время хранения за счет эффекта саморазряда, неизвестно. Литий-ионный аккумулятор заряжать можно сразу, чтобы батарея была в полной готовности к работе. Никель-кадмиевую батарею надо сначала разрядить до начала падения оборотов вала шуруповерта, и потом зарядить полностью. Это поможет избежать потери емкости. Таким же образом желательно поступить и с NiMH АКБ, хотя у нее эффект памяти выражен не столь отчетливо.

На каком этапе разряда подключить зарядку

В большинстве случаев шуруповерт сам подскажет, когда надо возобновить энергию батарей. При разряженной АКБ падают обороты вала и уменьшается вращающий момент, работать становится невозможно и потребуется заменить аккумулятор на заряженный. До глубокого разряда дело в такой ситуации не дойдет.

Разряженный в процессе работы аккумулятор надо обязательно в ближайшее время зарядить, потому что при длительном хранении (даже без включения электродвигателя) будет происходить разряд элементов АКБ через собственное внутреннее сопротивление. Это может привести к глубокой разрядке батареи и к выходу ее из строя.

Многие шуруповерты имеют индикатор уровня заряда батареи. Можно ориентироваться на него. Но такие системы довольно грубы и нелинейны, поэтому их можно использовать для очень приблизительной оценки состояния остаточной энергии. Если батарея литий-ионная, то заряжать ее можно в любое время с любого уровня.

Сколько по времени заряжать

Время заряжания аккумуляторов может быть различным. Оно зависит:

Фактическая емкость батареи никогда неизвестна (ее можно замерить контрольным разрядом, но реально это бессмысленно). В процессе эксплуатации она изменяется от заявленного производителем максимума (у новой АКБ) до практического нуля (в конце срока работы). Уровень остаточного заряда в процентах также точно определить невозможно (его можно лишь косвенно оценить по фактическому напряжению). По этим причинам контролировать заряд по времени не получится. Можно лишь говорить о том, что глубоко разряженный новый аккумулятор при одинаковом токе заряжается дольше слегка разряженного старого. Для окончания заряжания и отключения ЗУ используются другие критерии:

Существуют и другие способы определения окончания процесса зарядки.

Для NiMH элементов при заряжании большим током в конце процесса наблюдается эффект снижения напряжения на элементе. Это явление можно использовать в качестве сигнала выключения зарядного устройства. Также можно контролировать процесс по снижению скорости нарастания напряжения в конце заряжания, но этот метод требует точного измерения напряжения и применения микроконтроллеров для математических вычислений.

Зарядная характеристика никель-металлогидридного аккумулятора (на графике напряжения виден участок с замедлением роста напряжения и с уменьшением напряжения по окончании заряжания)

Рекомендуем к просмотру тематическое видео.

Как разобрать аккумулятор

Если выявлена неисправность АКБ, надо перейти к обнаружению неисправных банок – все ячейки редко выходят из строя одновременно, а для создания проблем достаточно одной или нескольких отстающих банок. Поэтому ремонт аккумуляторов для шуруповерта надо начать с разбора АКБ и извлечения ячеек. Рассоединять их пока не надо.

Порядок разборки зависит от конструкции корпуса. Где-то надо будет отжать защелки, где-то вывинтить саморезы или винты. После снятия крышки надо вытащить элементы батареи.

Перед тем, как перебрать батарею, надо провести визуальный контроль каждой ячейки. Если среди них есть вздувшиеся, механически поврежденные, со следами потеков электролита или коррозии, такие банки без раздумий надо помечать, как неисправные. Восстанавливать их не стоит.

На остальных элементах надо замерить напряжение. Если оно не соответствует номиналу (или даже ниже нижнего предела), банку надо попробовать зарядить. Рассоединять батарею и в этом случае не обязательно.

Для этого нужен будет источник напряжения с регулируемым выходом. Если зарядить не удалось, банка отбраковывается. Элементы, которые получилось довести до номинала, надо раздельно проверить на емкость и токоотдачу по методике, указанной выше. Если банка не держит зарядку или не выдает достаточный ток, она бракуется.

Подтягивать заряд литий-ионных банок надо при отключенной плате балансировки. Она может интерпретировать глубокий разряд, как неисправность, и блокировать элемент.

Характеристики батарей

При выборе батареи учитываются следующие характеристики:

  • Тип батареи (элемента)
  • Тип химической реакции батареи (элемента)
  • Напряжение
  • Емкость
  • Относительная скорость разряда
  • Допустимая глубина разряда
  • Зависимость емкости от относительной скорости разряда
  • Удельная энергоемкость (на единицу веса)
  • Энергоемкость (на единицу объема)
  • Удельная мощность (на единицу веса)
  • Диапазон рабочих температур
  • Допустимая глубина разряда
  • Размер и вес
  • Цена

Ниже рассматриваются некоторые из этих характеристик.

Тип батареи

Существуют две основные категории элементов питания и батарей: первичные (одноразовые) и вторичные (аккумуляторы с возможностью перезарядки).

Первичные источники тока

Это химические источники тока без надежной возможности их перезарядки. После использования такие источники утилизируют. Примером первичных источников тока являются марганцево-цинковые с угольным стержнем (солевые) и щелочные элементы.

Вторичные источники тока

Вторичные источники тока (элементы или батареи) — аккумуляторы, которые рассчитаны на большое количество перезарядок (до 1000 раз). В них энергия электрического тока превращается в химическую энергию, которая накапливается и в дальнейшем может быть снова преобразована в электрический ток. Самый известный и старый тип аккумуляторов — свинцовый или кислотный. Другими распространенными аккумуляторами являются никель-кадмиевые (NiCd), никель-металлгидридные (NiMH), литий-ионные (Li-Ion) и литий-полимерные (LiPo) аккумуляторы.

Удельная энергоемкость (на единицу веса) и плотность энергии на единицу объема

Удельная энергоемкость на единицу веса батареи измеряется в единицах энергии на единицу массы. В СИ она измеряется в джоулях на килограмм (Дж/кг). Для аккумуляторов обычно используются ватты на кг (Вт/кг). Плотность энергии на единицу объема — это количество энергии, запасенной в батарее на единицу ее объема. Измеряется в ватт-часах на литр (Вт-ч/л).

К сожалению, удельная энергоемкость батарей относительно невелика, если сравнивать ее с энергоемкостью бензина. В то же время, удельная энергоемкость недавно разработанных литий-ионных аккумуляторов в четыре раза выше свинцовых. Электромобили с такими аккумуляторами уже достаточно удобны для ежедневного использования. Литий-полимерные батареи имеют самую высокую удельную энергоемкость и поэтому широко используются на летательных аппаратах с дистанционным управлением (дронах).

Щелочные батареи

Несмотря на то, что щелочные элементы питания появились более 100 лет назад, это наиболее распространенный тип одноразовых портативных источников питания. Номинальное напряжение щелочного элемента составляет 1,5 В, а емкость щелочного элемента типа АА достигает 1800–2600 мА·ч. Если объединить несколько таких элементов в один корпус, можно получить батарею на 4,5 В (из трех элементов), 6 В (из четырех элементов) и 9 В (из шести элементов). Батареи на 9 В (типа «Крона» — по названию выпускаемых в СССР угольно-цинковых батарей), разработанные для первых транзисторных радиоприемников, теперь используются для переносных радиостанций, детекторов дыма и пультов дистанционного управления моделями. Их емкость очень мала, всего около 500 мА·ч. Удельная энергоемкость щелочных элементов 110–160 Вт-ч/кг.

Марганцево-цинковые батареи

Марганцево-цинковые (также угольно-цинковые или солевые) первичные элементы питания были изобретены в 1886 г. и все еще используются сегодня. Номинальное напряжение такого элемента — 1,5 В, емкость элемента типа АА — 400–1700 мА·ч. Марганцево-цинковые элементы и батареи выпускаются тех же типоразмеров, что и щелочные. Их удельная энергоемкость составляет 33–42 Вт-ч/кг, то есть примерно втрое ниже энергоемкости щелочных элементов питания. Из-за невысокой энергоемкости их используют только там, где не требуется отдавать в нагрузку большой ток или если устройства используются не часто, например, в пультах управления или часах.

Кислотные аккумуляторные батареи

Кислотные (или свинцовые) аккумуляторные батареи недороги, доступны и широко используются в автомобилях, другой технике, в источниках бесперебойного питания и другой аппаратуре. Напряжение на кислотном элементе – 2 В. В батарее обычно бывает 3, 6 или 12 элементов, что позволяет получить 6,12 и 24 В соответственно. Свинцовые аккумуляторы удобны в тех случаях, если их большой вес не имеет значения. Удельная энергоемкость свинцовых аккумуляторов 33–42 Вт-ч/кг.

Никель-кадмиевые аккумуляторные батареи

Никель-кадмиевые (NiCd) аккумуляторные батареи (вторичные) изобрели более 100 лет назад и только в конце 90-х гг. прошлого века вместо них начали широко применяться никель-металлгидридные и литий-ионные аккумуляторы. Напряжение никель-кадмиевого элемента 1,2 В, удельная энергоемкость 40–60 Вт-ч/кг.

Никель-металлгидридные аккумуляторы

Никель-металлгидридные аккумуляторы (вторичные) были изобретены относительно недавно — в 1967 г. Их объемная энергоемкость намного выше намного выше, чем у никель-кадмиевых аккумуляторов, и приближается к энергоемкости литий-ионных аккумуляторов. Номинальное напряжение элемента — 1,2 В, удельная энергоемкость — 60–120 Вт-ч/кг. Удельная мощность NiMH аккумуляторов 250–1000 Вт/кг также намного выше, чем у никель-кадмиевых аккумуляторов (150 Вт/кг).

Литий-полимерные аккумуляторы

В литий-ионных полимерных (или литий-полимерных, LiPo) аккумуляторах используется желеобразный полимерный электролит. В связи с их высокой удельной энергоемкостью 100–265 Вт-ч/кг, они используются в тех случаях, когда малый вес является основным фактором. Сюда относятся мобильные телефоны, летательные аппараты с дистанционным управлением (дроны) и планшетные компьютеры. В связи с их высокой удельной энергоемкостью, LiPo аккумуляторы при перегреве и избыточном заряде подвержены тепловому разгону, который может привести к утечке электролита, взрыву и пожару. Также при эксплуатации необходимо учитывать, что эти батареи расширяются при хранении в полностью заряженном состоянии, что может привести к появлению трещин в корпусе устройства, в котором они установлены.

Литий-железо-фосфатные аккумуляторы

Литий-железо-фосфатные аккумуляторы (вторичные источники питания, LiFePO₄) — это литий-ионные аккумуляторы, в которых в качестве катода используется фосфат лития-железа LiFePO₄, а в качестве анода — графитовый электрод с металлической сеткой. Это относительно новая технология, разработанная в начале 2000-х гг., имеет ряд преимуществ и недостатков по сравнению с традиционными литий-ионными аккумуляторами. Напряжение на элементе составляет 3,2 В и, поскольку оно весьма высокое по сравнению с другими типами химических реакций литий-ионной технологии, для получения номинального напряжения 12,8 В нужно всего четыре элемента. В процессе разряда, напряжение на этих аккумуляторах весьма стабильно, что позволяет получать от батареи почти полную мощность в процессе ее разряда. Аккумуляторы LiFePO₄ имеют удельную энергоемкость 90–110 Вт-ч/кг. Литий-железо-фосфатные аккумуляторы используются в электрических велосипедах, электромобилях, фонарях на солнечных батареях, в электронных сигаретах и фонарях. Литий-железо-фосфатный аккумулятор типоразмера 14500 имеет те же геометрические размеры, что аккумулятор типа АА. Однако его напряжение 3,2 В.

Напряжение батареи

Напряжение батареи определяется типом химического процесса, используемого в элементах, а также количеством элементов, соединенных последовательно. Ниже в таблице показаны напряжения различных первичных и вторичных элементов.

NiCd, NiMH аккумуляторы 1,2 V
Щелочные гальванические элементы 1,5 V
Угольно-цинковые гальванические элементы 1,5 V
Кислотные аккумуляторы 2 V
Литиевые гальванические элементы, в зависимости от используемого химического процесса 1,5–3 V
Литий-ионные аккумуляторы, в зависимости от используемого химического процесса 3–3,6 V

Если батарея из гальванических элементов изготовлена из нескольких элементов, соединенных последовательно, ее напряжение может быть 4,5 В, 12 В, 24 В, 48 В и др.

Емкость батареи

Емкость батареи — это количество электричества (заряд), который батарея может использовать для создания электрического тока в нагрузке при номинальном напряжении на ней. Отметим, что емкость батареи и электрическая емкость — это разные физические величины. Емкость батарей можно измерить в единицах электрического заряда — кулонах (Кл), а емкость конденсатора в единицах электрической емкости — фарадах (1 Ф = 1 Кл/В). Однако на практике емкость батарей удобнее измерять в ампер-часах (А-ч или А·ч) или миллиампер-часах (мА-ч или мА·ч, 1 мА·ч = 1000 А·ч). Эта единица не учитывает напряжение на аккумуляторе или элементе питания, однако она удобна с учетом того, что элементы с одним типом химической реакции всегда имеют одно напряжение. Номинальная емкость батареи часто выражается в виде произведения 20 часов на величину тока, который свежезаряженная батарея способна отдавать в нагрузку в течение 20 часов при комнатной температуре. Реальная (не номинальная) емкость любой батареи зависит от нагрузки, то есть, от тока, который батарея отдает в нагрузку, или от относительной скорости ее разряда. Чем выше скорость разряда, тем ниже реальная емкость батареи.

Емкость батареи можно измерить также в единицах энергии — ватт-часах (Вт-ч или Вт·ч). Счетчик в вашей квартире измеряет израсходованную электроэнергию в киловатт-часах (кВт-ч), то есть почти в таких же единицах, только в тысячу раз больших. 1 кВт-ч = 1000 Вт-ч. Чтобы получить емкость батареи в единицах энергии нужно умножить емкость в ампер-часах на номинальное напряжение. Например, батарея 12 В 8 А·ч, которая часто используется в небольших источниках бесперебойного питания, может хранить 12 8 = 96 Вт-ч энергии.

В приведенной ниже таблице показана номинальная емкость гальванических элементов питания напряжением 1,5 В и аккумуляторов напряжением 1,2 В типа АА:

NiMH аккумуляторы 600–3600 mAh
NiCd аккумуляторы 600–1000 mAh
Щелочные элементы 1800–2600 mAh
Угольно-цинковые элементы 400–1700 mAh
Литиевые элементы 1500–3000 mAh
батарея, полностью, зарядить, шуруповерт

Относительная скорость разряда батареи

Относительная скорость разряда батареи (англ. С-rate, C-rating) определяется как ток разряда, деленный на теоретический ток, при котором в течение одного часа будет полностью израсходована номинальная емкость батареи. Это безразмерная величина, обозначаемая буквой C (от англ. charge — заряд). Например, батарея с номинальной емкостью Cbat = 8 А·ч, при разряде со скоростью 2C израсходует свою номинальную емкость для создания в нагрузке тока Ibat=16 A в течение 0,5 часа. Разряд 1С для той же батареи означает, что она израсходует свою номинальную емкость для создания в нагрузке тока Ibat = 8 A в течение одного часа. Отметим, что относительная скорость разряда является безразмерной величиной, несмотря на то, что Cbat выражается в ампер-часах, а Ibat — в амперах. Отметим также, что батарея отдаст в нагрузку меньше энергии при разряде с большей скоростью.

Глубина разряда батареи

Сохраняемая в батарее полная энергия часто не может быть использована полностью без повреждения батареи. Допустимая глубина разряда батареи (англ. DOD — depth of discharge) иногда указывается в ее технических характеристиках и определяет процент энергии, который может быть получен от батареи. Например, свинцовые кислотные аккумуляторы, предназначенные для запуска двигателя автомобиля, не рассчитаны на глубокий разряд большим стартерным током, который может легко их повредить. Тонкие пластины, установленные в таких аккумуляторах, позволяющие достичь высокой площади поверхности электродов, а, следовательно, максимального тока, могут быть легко повреждены при глубоком разряде, особенно если такой разряд большим стартерным током часто повторяется. Некоторые батареи по техническим условиям могут быть разряжены только на 30%. Это означает, что только 30% их емкости можно использовать для питания нагрузки.

В то же время, выпускаются свинцовые аккумуляторы с более толстыми пластинами, которые рассчитаны на регулярный заряд–разряд. Именно такие батареи используются в солнечных батареях и в электромобилях.

Оживляем шуруповерт. Все для переделки шуруповерта на 18650 литий-ионные аккумуляторы

Аккумулятор шуруповерта рано или поздно «устанет» и его необходимо будет менять. Купить новый аккумулятор оправданно в ситуации когда инструмент стоит копейки. Но если у вас что-то более-менее приличное, или аккумулятор старый на Ni-CD, то однозначно имеет смысл поменять севшие 18650 аккумуляторы на новые или полностью перевести шуруповертс никеля на литиевые.

Безусловно, как и в любом деле, тут есть свои нюансы, но если ваши руки хотя бы минимально прямые, то самостоятельно переделать шуруповерт на литий совсем несложно. Нужно лишь знать что купить для переделки и понимать базовые нюансы процесса. А уж купить на алиэкспресс все для перевода шуруповерт на литий — элементарно.

Почему 18650 Li-ion? Преимущества литиевых аккумуляторов очевидны:

Кстати, если вы любите читать, то есть вариант отлично сэкономить! Книжный сервис ЛИТРЕС, крупнейший в России и странах СНГ дает четвертую книгу в подарок при покупке трех. Лично я именно там и покупаю книги уже порядка 5 лет. Ценник и без того доступный, а с таким бонусом выходит совсем небольшим. Есть удобное приложение для чтения и прослушивания книг. По ссылке выше — одна из моих подборок, в которой есть жирный обновляемый промокод.

Переделка аккумулятора шуруповерта. Что нужно знать:

1) Для шуруповерта нужны высокотоковые 18650 аккумуляторы (идеально — Sony/Murata VTC5, VTC5A, VTC6. Допустимо — Samsung 25R), либо менее высокотоковые аккумуляторы, соединенные в параллель (если позволяет место).

2) Категорически нельзя использовать старые ноутбучные аккумуляторы и просто разные аккумуляторы. Все 18650 аккумуляторы в сборке должны иметь минимальный разбег емкости и прочих характеристик. Безусловно, купить высокотоковый 18650 аккумулятор на алиэкспресс — самое простое решение. Только заранее учитывайте что название модели не будет иметь никакого отношения к ячейке внутри. 4 аккумулятора, купленные одним лотом у одного продавца могут существенно отличаться по емкости и внутреннему сопротивлению. Хотя ниже по ссылке будет неплохой вариант для тех, кто не хочет паять.

Идеальный вариант. купить 18650 у проверенного продавца на том же avito, или заказать 18650 на nkon В последнем случае придется заплатить 10 евро за доставку, но аккумуляторы будут 100% оригинальные и намного дешевле покупки на месте (что сведет оплату доставки в ноль). Лично я много лет беру аккумуляторы именно в этом магазине.

Я делал статью о том как выбрать 18650 литий-ионный аккумулятор, если интересно — читаем ее тут

3) Подключение аккумуляторов к BMS плате производится строго последовательно: вначале 0 В затем 4,2 В, 8,4 В, 12,6 В, 16,8 В. При нарушении BMS работать не будет!

4) 18650 аккумуляторы в сборке должны быть заряжены одинаково. Лучше всего зарядить каждый аккумулятор отдельно и затем собрать в сборку.

5) Как посчитать сколько нужно 18650 литиевых аккумуляторов вместо никелевых? В целом, расчет такой: 2-3 NiCd = 1 литиевый, 5-6-7 NiCd = 2 литиевых, 8-9-10 NiCd = 3 литиевых, 11-12-13 NiCd = 4 литиевых

6) Литиевые аккумуляторы очень боятся перегрева. Идеальный вариант — точечная сварка. Пайка тоже вполне работает. Как паять 18650? Самое главное — вам нужно максимально большое жало. Свести время контакта жала и 18650 аккумулятора к минимуму и не перегреть последний. В остальном процесс не отличается от любой другой пайке. Лучше всего набить руку на тех старых аккумуляторах, которые вы будете заменять.

BMS-плата

BMS (Battery Management System) – система управления батареей. BMS-плата исключительно важна при переделке шуруповерта на литий. Зачем она нужна и как она работает? Она контролирует заряд и разряд, предотвращая переразряд и перезаряд аккумулятора шуруповерта, в нее встроен «балансир», который заряжает отдельно каждый Li-Ion аккумулятор в сборке. Последнее крайне важно! Бывают BMS без балансира! 3S — 12v, 4s — 14v, 5s — 18v Чтобы выбрать BMS плату, надо учитывать что минимальный ток должен быть 30А, иначе она будет уходить в защиту.

Вариант BMS-платы по ссылке на 2-3 доллара дороже каких-то базовых версий, но вы получаете 100А вместо 30А или 40А. На мой взгляд, по функционалу это лучшая БМС-плата с алиэкспресс и заслуживает этой символической переплаты.

Переделка аккумулятора шуруповёрта на Li-Ion

Ничего нового я в этой статье не скажу, но просто хочется поделиться опытом апгрейда аккумуляторов моего старого шуруповёрта Makita. Изначально данный инструмент был рассчитан на никель-кадмиевые аккумуляторы (которые давно уже умерли, как умерли и купленные на смену такие же). Недостатки Ni-Cd известны: низкая ёмкость, небольшой срок жизни, высокая цена. Поэтому уже давно производители аккумуляторного инструмента перешли на литий-ионные батареи.

Шуруповёрт P.I.T. PSR14.4-D1 / Быстро разряжается батарея

Ну, а что делать тем, у кого инструмент старый? Да всё очень просто: выбросить Ni-Cd банки и заменить их на Li-Ion популярного формата 18650 (маркировка обозначает диаметр 18 мм и длину 65 мм).

Какая нужна плата и какие нужны элементы для переделки шуруповёрта на литий-ион

Итак, вот мой аккумулятор на 9,6 В и ёмкостью 1,3 А·ч. При максимальном уровне заряда он имеет напряжение 10,8 вольт. Литий-ионные элементы имеют номинальное напряжение 3,6 вольта, максимальное – 4,2. Следовательно, для замены старых никель-кадмиевых элементов на литий-ионные мне потребуются 3 элемента, их рабочее напряжение будет 10,8 вольт, максимальное – 12,6 вольт. Превышение номинального напряжения никак не повредит мотору, он не сгорит и при большей разнице, беспокоиться не надо.

Литий-ионные элементы, как это всем давно известно, категорически не любят перезаряд (напряжение выше 4,2 В) и чрезмерный разряд (ниже 2,5 В). При таких превышениях рабочего диапазона элемент очень быстро деградирует. Поэтому литий-ионные элементы всегда работают в паре с электронной платой (BMS – Battery Management System), управляющей элементом и контролирующей как верхнюю, так и нижнюю границу напряжения. Это плата защиты, просто отсоединяющая банку от электрической цепи при выходе напряжения за границы рабочего диапазона. Поэтому помимо самих элементов, потребуется такая плата BMS.

Теперь два важных момента, с которыми я несколько раз неудачно экспериментировал, пока не пришёл к правильному выбору. Это – максимально допустимый рабочий ток самих Li-Ion элементов и максимальный рабочий ток BMS-платы.

В шуруповёрте рабочие токи при высокой нагрузке достигают 10-20 А. Поэтому и элементы нужно покупать такие, которые способны отдавать высокие токи. Лично я успешно пользуюсь 30-амперными элементами 18650 производства Sony VTC4 (ёмкостью 2100 мАч) и и 20-амперными Sanyo UR18650NSX (ёмкостью 2600 мАч). Они нормально работают в моих шуруповёртах. А вот, например, китайские TrustFire 2500 мАч и японские светло-зелёные Panasonic NCR18650B на 3400 мАч не годятся, они на такие токи не рассчитаны. Поэтому не надо гнаться за ёмкостью элементов – даже 2100 мАч более чем достаточно; главное при выборе – не просчитаться с максимально допустимым током разряда.

И точно так же, BMS-плата должна быть рассчитана на высокие рабочие токи. Я видел в YouTube, как народ собирает аккумуляторы на 5-ти или 10-амперных платах – не знаю, лично у меня такие платы при включении шуруповёрта сразу уходили в защиту. По-моему, это выброс денег. Скажу так, что сама фирма Makita ставит в свои аккумуляторы 30-амперные платы. Поэтому я пользуюсь 25-амперными BMS, купленными на Алиэкспрессе. Они стоят около 6-7 долларов и ищутся по запросу «BMS 25A». Поскольку нужна плата на сборку из 3-х элементов, то надо искать такую плату, в названии которой будет «3S».

Ещё один важный момент: у некоторых плат на зарядку (обозначение «С») и нагрузку (обозначение «P») могут идти разные контакты. Например, плата может иметь три контакта: «P-», «P» и «C-», как на родной макитовской литий-ионной плате. Такая плата нам не подойдёт. Зарядка и разрядка (charge/discharge) должны осуществляться через один контакт! То есть, на плате должно быть 2 рабочих контакта: просто «плюс» и просто «минус». Потому что наше старое зарядное устройство также имеет только два контакта.

В общем, как уже можно было догадаться, я со своими экспериментами выбросил массу денег как на неправильные элементы, так и на неправильные платы, совершив все ошибки, которые можно было совершить. Зато получил бесценный опыт.

Как разобрать аккумулятор шуруповёрта

Как разобрать старый аккумулятор? Есть аккумуляторы, где половинки корпуса крепятся винтами, но есть и на клею. Мои аккумуляторы как раз из последних, и я вообще долгое время считал, что их невозможно разобрать. Оказалось, что возможно, если у тебя есть молоток.

В общем, с помощью интенсивных ударов в периметр кромки нижней части корпуса (молоток с нейлоновой головкой, аккумулятор нужно держать в руке на весу) место склейки успешно разъединяется. Корпус при этом никак не повреждается, я уже 4 штуки так разобрал.

От старой схемы нужны только контактные пластины. Они прочно приварены к верхним двум элементам точечной сваркой. Отковырять сварку можно отвёрткой или плоскогубцами, но ковырять надо максимально аккуратно, чтобы не сломать пластик.

Всё почти готово для дальнейшей работы. Кстати, штатные термодатчик и размыкатель я оставил, хотя они уже не особо актуальны.

Но очень даже вероятно, что наличие этих элементов необходимо для нормальной работы штатного зарядного устройства. Поэтому настоятельно рекомендую их сохранить.

Собираем литиево-ионный акумулятор

Вот новые элементы Sanyo UR18650NSX (по этому артикулу их можно найти на Алиэкспрессе) ёмкостью 2600 мАч. Для сравнения, старый аккумулятор имел ёмкость всего 1300 мАч, в два раза меньше.

Надо припаять провода к элементам. Провода нужно брать сечением не менее 0,75 кв.мм, ведь токи у нас будут немалые. Провод с таким сечением нормально работает с токами более 20 А при напряжении 12 В. Паять литий-ионные банки можно, кратковременный перегрев им никак не повредит, это проверено. Но нужен хороший быстродействующий флюс. Я пользуюсь глицериновым флюсом ТАГС. Полсекунды – и всё готово.

батарея, полностью, зарядить, шуруповерт

Припаиваем другие концы проводов к плате согласно схеме.

На контактные разъёмы батареи я всегда пускаю ещё более толстые провода по 1,5 кв.мм – потому что место позволяет. Прежде чем их припаивать к ответным контактам, на плату надеваю отрезок термоусадочной трубки. Она необходима для дополнительной изоляции платы от аккумуляторных элементов. В противном случае острые края пайки легко могут протереть или проткнуть тонкую плёнку литий-ионного элемента и вызывать замыкание. Можно и не применять термоусадку, но хотя бы что-то изолирующее проложить между платой и элементами совершенно необходимо.

Контактную часть можно укрепить в корпусе аккумулятора парой капелек супер-клея.

Хорошо, когда корпус на винтах, но это не мой случай, поэтому я просто снова склеиваю половинки «Моментом».

Зарядка батареи производится штатным зарядным устройством. Правда, алгоритм работы меняется.

У меня есть два зарядных устройства: DC9710 и DC1414 T. И работают они теперь по-другому, поэтому я расскажу, как именно.

Зарядное устройство Makita DC9710 и литий-ионная батарея

Раньше заряд аккумулятора контролировало само устройство. При достижении полного уровня оно останавливало процесс и сигнализировало о завершении зарядки зелёным индикатором. Но сейчас контролем уровня и отключением питания занимается установленная нами схема BMS. Поэтому по завершении зарядки красный светодиод на зарядном устройстве просто выключится.

Если у вас именно такое старое устройство – вам повезло. Потому что с ним всё просто. Горит диод – идёт зарядка. Погас – зарядка завершена, аккумулятор полностью заряжен.

Зарядное устройство Makita DC1414 T и литий-ионная батарея

Здесь есть небольшой нюанс, который нужно знать. Это ЗУ поновее и предназначено оно для зарядки более широкого диапазона аккумуляторов от 7,2 до 14,4 В. Процесс зарядки на нём идёт как обычно, горит красный светодиод:

А вот когда аккумулятор (которому в случае NiMH-элементов положено иметь максимальное напряжение 10,8 В) достигнет 12 вольт (у нас же Li-Ion элементы, у которых максимальное суммарное напряжение может составлять 12,6 В), заряднику снесёт крышу. Потому что он не поймёт, какой именно аккумулятор он заряжает: то ли 9,6-вольтовый, то ли 14,4-вольтовый. И в этот момент Makita DC1414 войдёт в режим ошибки, попеременно мигая красным и зелёным светодиодом.

Это нормально! Ваша новая батарея всё равно зарядится – правда, не до конца. Напряжение будет составлять примерно 12 вольт.

То есть какую-то часть ёмкости с этим зарядным устройством вы упустите, но мне кажется, это можно пережить.

Итого модернизация аккумулятора обошлась примерно в 1000. Новый макитовский Makita PA09 стоит в два раза дороже. Причём мы в итоге получили вдвое большую ёмкость, а дальнейший ремонт (в случае нескорого выхода из строя) будет заключаться только в замене литий-ионных элементов.

Внимание: данная статья и изображения в ней являются объектами авторского права. Частичное или полное воспроизведение на других ресурсах без согласования запрещено.

Правила использования никель-кадмия и никель-металл-гидрида обязывают перед зарядом разряжать аккумулятор полностью, иначе его емкость стремительно падает. Не соблюдая эти правила, аккумулятор долго служить не сможет. А полный заряд у них длится около 10 часов, что весьма не быстро.

Литиевые аккумуляторы лишены этого недостатка. Их можно заряжать с любого уровня. И заряд возможен в разы быстрее. Полный цикл заряда от 0 до 100% при использовании правильного зарядного устройства может занимать около полутора часов. А для аккумуляторов с возможностью быстрого заряда менее часа.

При одинаковом с NiCd или Ni MH обьеме и массе литиевый аккумулятор будет в разы более ёмким, а значит его будет хватать на больший обьем работы. К тому же литиевые аккумуляторы имеют низкий саморазряд, долговечнее и легче никель-кадмиевых и никель-металл-гидридных АКБ.

Подобным образом возможно переделать не только шуруповерт, но и другие аккумуляторные гаджеты и устройства с питанием от батареек.

Устройство и типы аккумуляторов для шуруповерта

Применение аккумуляторного шуруповерта не зависит от наличия поблизости электросети, что повышает комфортность работы с инструментом. Шуруповерты предназначаются для профессионального и бытового применения. Соответственно, аккумуляторы к ним различаются по качеству, цене и емкости. Последнее время производители выпускают аккумуляторные батареи (АКБ) с достаточной для инструмента мощности при сравнительно малых размерах источника питания.

Схема устройства шуруповерта со съемным аккумулятором.

Аккумулятор для шуруповерта представляет собой набор элементов (банок), соединенных последовательно в нижней части корпуса инструмента. Диапазон питающего напряжения для различных моделей шуруповертов составляет 9-18 В. ЭДС профессионального инструмента может достигать 36 В. Чем выше напряжение питающего элемента, тем мощнее инструмент. Чем больше емкость в каждой батарейке, тем большее время он сможет проработать без подзарядки. Емкость АКБ бытовых шуруповертов находится в пределах 2,7 А/ч.